

УПРАВЛЕНИЕ РЕСУРСАМИ ПРЕДПРИЯТИЙ И МОДЕЛИРОВАНИЕ БИЗНЕСА НА ОСНОВЕ ОНТОЛОГИЧЕСКИХ МОДЕЛЕЙ И МУЛЬТИАГЕНТНЫХ ТЕХНОЛОГИЙ

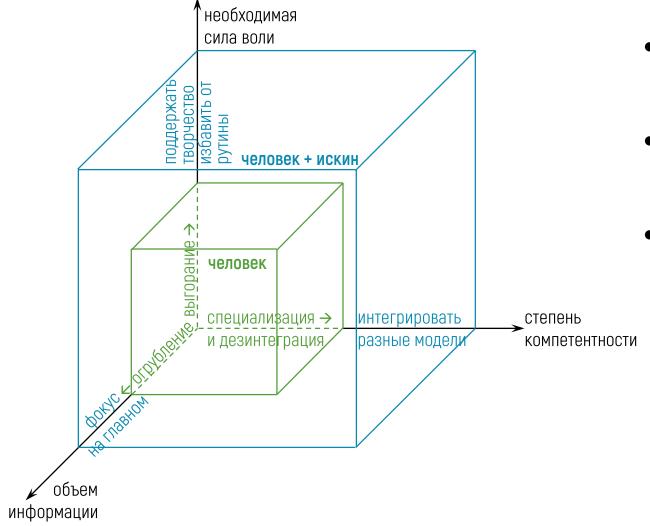
ГРАЧЕВ Сергей Павлович

Генеральный директор

НАО «ГК «Генезис знаний» 000 «Эмерженте»

121205, г. Москва, ИЦ Сколково, Большой бульвар, 42с1

telegram: <u>@Rookson</u> mobile: +7 985 233 0437 email: <u>spg@mrgnt.ai</u>



КАКОЙ ИИ НАМ НУЖЕН?

КУБ ЧЕЛОВЕК + ИСКИН

- Искин может поддержать творчество
- Искин может оперировать бесконечными данными
- Искин может интегрировать физические, технологические, бизнес и др. модели

НОВЫЕ ВЫЗОВЫ ЭКОНОМИКИ

Растет сложность	Неопределенность	трудно предсказать изменения спроса и предложения
принятия решений по	Ситуативность	решение надо принимать по ситуации
управлению	Многофакторность	много разных критериев, предпочтений и ограничений
предприятиями	Высокая связность	принятие одного решения вызывает изменение других
	Индивидуальность	потребители требуют все более индивидуального подхода
	Конфликты	все больше участников с противоречивыми интересами
	Трудоемкость	слишком много опций, чтобы просчитать последствия
Усиливается	Оперативность	требуется высокая оперативность для принятия решений
динамика принятия	Непрерывность	идут постоянные изменения спроса и предложения
решений в ходе	Событийность	часто случаются события, которые меняют планы
управления	Срочность	сокращается время на ответ - решения принимаются под прессом времени
	Балансировка	необходимо постоянно балансировать разные критерии
	Экономика	надо непрерывно считать экономику вариантов и менять цены динамически
	Сопряженность	нужны постоянные взаимодействия с клиентами и поставщиками

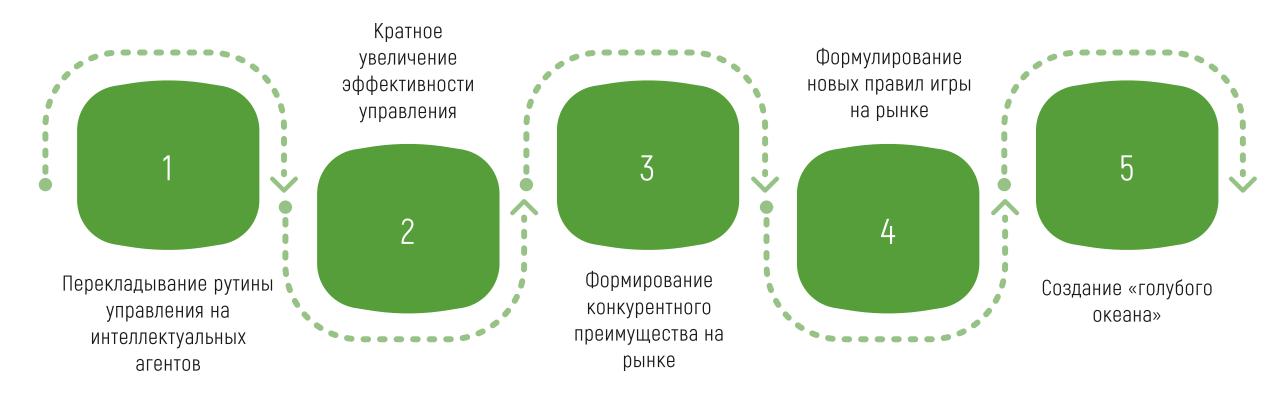
Эти особенности требуют методов и средств для поддержки принятия решений по управлению ресурсами в реальном времени

ЗАДАЧА: СЛЕДСТВИЕ РЕШЕНИЯ:

КРАТНОЕ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ УПРАВЛЕНИЯ КРАТНОЕ СНИЖЕНИЕ ТРАНСАКЦИОННЫХ ИЗДЕРЖЕК

Трансформационные:

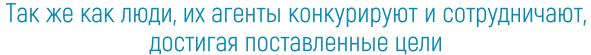
- Использование капитала
- Использование материальных ресурсов
- Использование трудовых ресурсов
- Использование информационных ресурсов


- Поиск информации
- Проверки информации
- Анализ информации
- Согласование требований
- Переговоры

наш фокус

«Следующий **прорыв** произойдет там, где найдут способ кратно снизить трансакционные издержки» (С) А.Аузан

«ПРОРЫВ»


АВТОНОМНЫЕ ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ РЕСУРСАМИ НА ОСНОВЕ ОНТОЛОГИЧЕСКИХ МОДЕЛЕЙ БИЗНЕСА И МУЛЬТИАГЕНТНЫХ ТЕХНОЛОГИЙ

 Опыт людей по управлению бизнесом оцифровывается и накапливается в базе знаний

- Рутина по формированию и согласованию управленческих решений выполняется программными роботами – агентами
- Человек становится экспертом, настраивающим взаимодействие агентов

ЛАНДШАФТ РЕШЕНИЙ ИИ

Подход	Оригинальный процесс	Задача			
Экспертные системы	Логический вывод	Поддержка принятия решений			
Нейронные сети	Сеть нейронов мозга	Распознавание и классификация объектов			
Вывод на фреймах	Психологический механизм построения выводов и предположений о новом на основе опыта	Классификация сложных нечётких (новых) объектов			
Генетические алгоритмы	Эволюционный отбор набора признаков	Поиск минимума или максимума в нечёткой задаче			
Семантические сети и агенты целей	Конкуренция и кооперация в живой природе	Поиск консенсуса разных меняющихся целей при разных меняющихся ограничениях			
Эмерджентный, коллективный интеллект	Поведение роя пчёл, колонии муравьев, группы людей	Решение недетерминированных задач			
Гибридные методы					

ТЕХНОЛОГИЧЕСКАЯ ГОНКА — БЫСТРЕЕ BCEX РЕШИТЬ САМУЮ СЛОЖНУЮ ЗАДАЧУ В ГОНКЕ ПОБЕДИТ ТОТ, КТО:

2025

создаст самую большую колонию искинов

2023

создаст LLM с самым большим количеством параметров

2020

соберет самую большую онтологию

2012

обучит самую большую нейросеть

2000

напишет самую большую программу

1950

больше всех соберет полупроводниковых вентилей в одну интегральную микросхему

АКСИОЛОГИЯ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ

Класс решаемых задач		ешаемых задач	Условия принятия решения	Метод решения	Сложность	Динамика	Пример ИТ решения
	P	Удовлетворение ограничений	Консонанс ценностей	Математическое программирование	Низкая одна целевая функция и заданные ограничения	Отсутствует	iLog, IBM APO, SAP
PH F	B ₃ B ₂ S S S S S S S S S S S S S S S S S S S	Теория игр	<mark>Конфронтация</mark> ценностей	Имитационное моделирование	Средняя разные целевые функции и заданные ограничения	Низкая игровая динамика	AnyLogic 7, The AnyLogic Company
() ()		Поиск консенсуса	Компромисс ценностей	Метод сопряженных взаимодействий на виртуальном рынке	Высокая разные меняющиеся целевые функции и меняющиеся ограничения наш фокус	Высокая управление в реальном времени	SmartSupply, SmartFactory, Генезис знаний

УСЛОВИЯ ПРИНЯТИЯ РЕШЕНИЯ

Ценность – предметом оценивания являются свойства объектов и сами объекты в их способности (или неспособности) отвечать потребностям и запросам субъекта

Консонанс ценностей

Участники процесса принятия решения имеют одинаковые, разделяемые всеми, интересы (доминируют групповые ценности, а частные игнорируются)

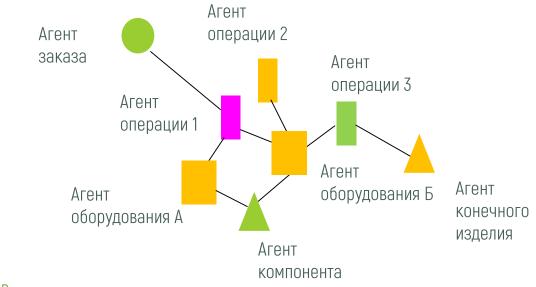
Конфликт ценностей

Различные участники процесса принятия решения имеют несовпадающие, противоположные интересы и не намерены изменять свои позиции (какой-либо компромисс индивидуальных и групповых ценностей исключаются полностью)

Компромисс ценностей

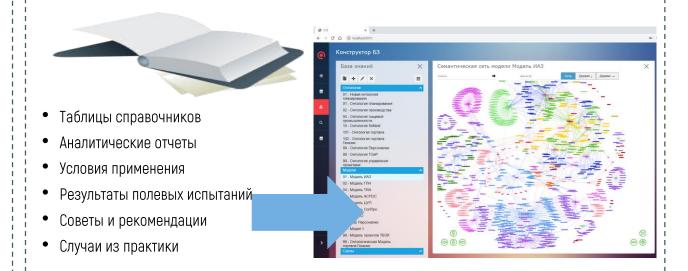
- Различные индивидуальные и групповые ценности согласовываются между собой и корректируются
- Неоднородность участников и их взаимный интерес друг к другу (потребность-возможность)
- Каждый из участников имеет свои собственные идеальные ценности–цели (потребности), устремленные в будущее, и материальные ценности–средства (возможности), отражающие его наличные ресурсы
- Отдельный участник не может построить субъективно-ценностное будущее по причине недостатка у него собственных возможностей
- Участники обращаются друг к другу с целью позаимствовать недостающие ресурсы, поделившись в обмен своими. Участникам приходится "умерять аппетиты", корректируя свои ценности–цели (компромисс ценностей)

Подход к решению задачи


Постановка задачи

ПОДХОД К ФОРМАЛИЗАЦИИ ЗАДАЧ ПЛАНИРОВАНИЯ

Мультиагентная технология


У каждой цели Заказчика появляется свой Агент, обеспечивающий максимально возможное достижение этой цели.

Цели могут быть любыми – зависимыми, независимыми, противоречивыми.

База знаний

В Базе знаний формализуются все (любые) правила управления бизнесом.

Особенности, предпочтения, ограничения (обязательные, желательные и т.д.), требования (стандартов, нормативные, локальные и т.д.).

ЗАДАЧА О 8 ФЕРЗЯХ НА ШАХМАТНОЙ ДОСКЕ

▶Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так,

пыдходынирешиению них не находился под боем другого

- 1. Использовать математическую постановку задачи Заполнить матрицу размером 8×8 нулями и единицами таким образом, чтобы сумма всех элементов матрицы была равна 8, при этом сумма элементов ни в одном столбце, строке или диагональном ряде матрицы не превышала единицы Результат: из 4 426 165 368 возможный расположений ферзей, 92 расположения удовлетворяют условию задачи, из них 12 уникальны
- 2. «Натренировать нейросеть»
- 3. Использовать онтологическую модель и виртуальный мир агентов для поиска решения задачи определить понятия фигура, ферзь, доска, отношения между ними, отношение «находится подбоем» определить агента фигуры

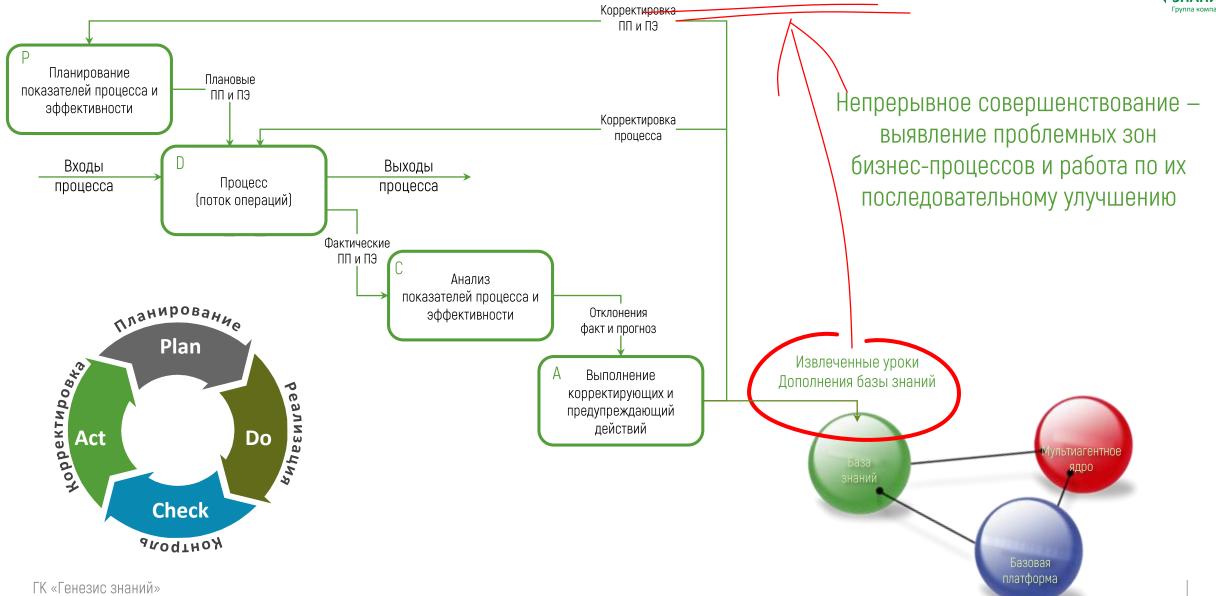
ЗАДАЧА О 8 ФЕРЗЯХ НА ШАХМАТНОЙ ДОСКЕ

▶Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого

А если ферзя нужно заменить на коня?

- 1. Доработать математическую постановку задачи и алгоритм решения
- 2. Заново «натренировать нейросеть»
- 3. Добавить определение новой фигуры в модели

ТЕХНОЛОГИИ РЕАЛИЗАЦИИ ИННОВАЦИОННОГО ПОДХОДА


Классические методы планирования		Нейронная сеть		База знаний и мультиагентная сеть	
Плюсы	Минусы	Плюсы	Минусы	Плюсы	Минусы
Достижение глобального оптимума по одной целевой функции	Ориентация на интересы центра – не подходит для учета и поиска баланса интересов (консенсуса)	Хорошо подходит для решения узких задач распознавания образов	Требует долгого обучения и полной выборки массивов тестовых данных	Решает сложные задачи управления ресурсами с конфликтами	Высокая сложность и трудоемкость разработки начального решения
Один хорошо изученный метод (алгоритм) для решения любых задач планирования и оптимизации ресурсов	Высокая вычислительная сложность комбинаторного перебора вариантов	Дает устойчивое решение при наличии ошибок в данных, помех и шумов	Зависит от ситуации во внешней среде и учителя: при изменении надо начинать заново	Возможность развития и учета индивидуальных особенностей заказов и ресурсов	При изменении ситуации во внешнем мире требует коррекции и базы знаний
Возможность купить готовый программный продукт на рынке	Не возможность работы по событиям в адаптивном режиме	Возможность купить готовый программный продукт на рынке	Не работает в адаптивном режиме по событиям	Работает в адаптивном режиме - быстрого ответа на событие	Усложнение диалога с пользователем (проактивность, может не согласиться и т.д.)
Легко вкладываются в существующие бизнес-процессы	Большая трудность настройки на решение практических задач	Позволяет использовать накопленные исторические данные предприятия	Большая трудность настройки на решение практических задач	Учет семантики предметной области в базе знаний	Трудности инновации и первопроходцев, смена бизнес-процессов

Технологии баз знаний и мультиагентных сетей наиболее отвечают потребностям реальной жизни

АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ НА ОСНОВЕ АИС

ДЕЛАЕТ НЕПРЕРЫВНОЕ СОВЕРШЕНСТВОВАНИЕ БИЗНЕСА НЕИЗБЕЖНЫМ

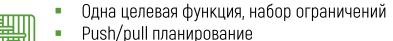
ЭФФЕКТ ОТ ВНЕДРЕНИЯ АВТОНОМНЫХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ ДЛЯ УПРАВЛЕНИЯ РЕСУРСАМИ ПРЕДПРИЯТИЯ В РЕАЛЬНОМ ВРЕМЕНИ

Руководитель становится экспертом, настраивающим бизнес-процессы

• Фокус руководителя смещается от рутины процесса управления к настройке процесса

Руководители применяют сценарное моделирование для прогнозирования результатов реализации планов

- Неограниченный сценарный анализ «что-если?»
- Ранжирование достаточного количества вариантов управленческих решений
- Переход от выбора «лучшего из имеющихся» к формированию оптимального варианта решения


Повышается устойчивость и безопасность системы управления

- Снижается вовлеченность людей в рутину процесса управления, операционную деятельность
- Повышается автономность отдельных узлов/процессов

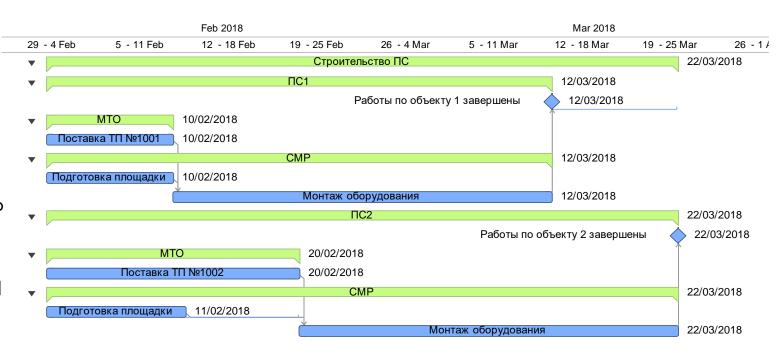
Непрерывное совершенствование бизнеса становится неизбежным

- Дополнение БЗ происходит на каждом цикле управления бизнес-процессом
- Использование «извлеченных уроков» становится возможным уже на следующем цикле управления

Одна расчетная модель бизнес-процесса

Единая модель всего процесса

- Неограниченное количество целевых функций, ограничений и функциональных зависимостей
- Интеграция моделей участников процесса путем переговоров

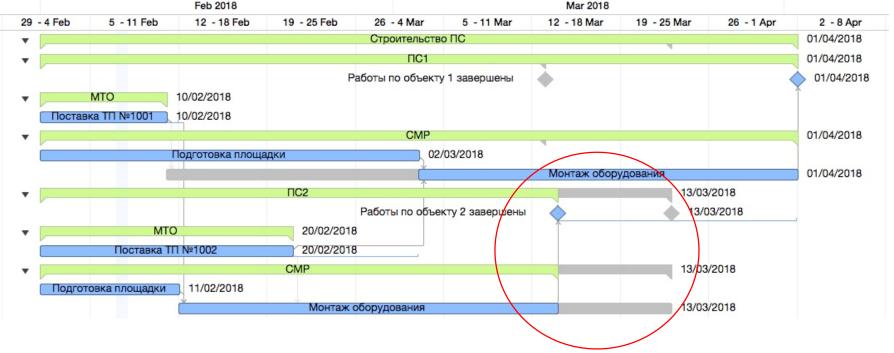


СЕМАНТИЧЕСКАЯ МОДЕЛЬ ПРОЕКТА

МАС УПРАВЛЕНИЯ КРУПНЫМИ ПРОЕКТАМИ — КЕЙС (1/3)

- На одной строительной площадке одновременно идет строительство 2-х электрических подстанций ПС1 и ПС2. График строительства каждого объекта состоит из 3-х работ:
 - Поставка Трансформаторной подстанции;
 - Подготовка площадки;
 - Монтаж оборудования.
- Заказчиком проекта поставлена задача «Как можно быстрее завершить строительство всех объектов»
- Монтаж оборудования возможен только после завершения работ 1 и 2. Работы 1 и 2 выполняются параллельно и не зависят друг от друга.
- На объекте «ПС1» поставка оборудования и подготовка площадки имеют одинаковую продолжительность и заканчиваются одновременно.
- На объекте «ПС2» поставка оборудования происходит позднее чем завершается подготовка площадки.

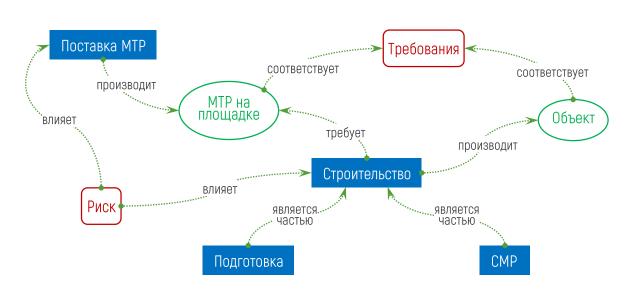
МАС УПРАВЛЕНИЯ КРУПНЫМИ ПРОЕКТАМИ — КЕЙС (2/3)


- В ходе производства работ на объекте «ПС1» произошла поломка техники, в следствии чего, интенсивность работы подрядчика снизилась в 3 раза.
- Продолжительность работы «Подготовка площадки» на объекте «ПС1» увеличилась в 3 раза.

МАС УПРАВЛЕНИЯ КРУПНЫМИ ПРОЕКТАМИ — КЕЙС (3/3)

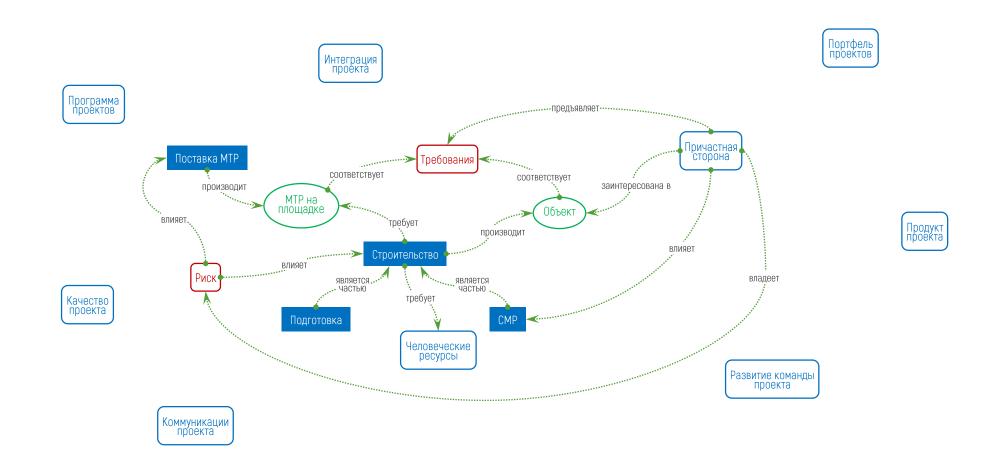
- В ходе производства работ на объекте «ПС1» произошла поломка техники, в следствии чего, интенсивность работы подрядчика снизилась в 3 раза.
- Продолжительность работы «Подготовка площадки» на объекте «ПС1» увеличилась в 3 раза.
- Руководитель проекта принял предложение MAC поменять поставку оборудования между объектами и таким образом сократить сроки по объекту «ПС2».


АИС УПРАВЛЕНИЯ ПРОЕКТАМИ



- Цель эффективное управление реализацией проектов (минимальные сроки и стоимость, максимальное соответствие требованиям к результату)
- Гибкое формирование и исполнение графика проекта за счет:
 - Вариативности представления работ в календарно-сетевой модели проекта как «одна большая работа» или «несколько составляющих большой работы»
 - Вариативности формирования календарно-сетевой модели проекта за счет перехода от жестких связей предшествования к отношениям в семантической сети связи «работа»-«результат» и «ресурс»-«работа»
 - Вариативности требований (определение минимального пуска)
 - Вариативности способов предотвращения и реагирования на риски проекта

Диаграмма предшествования


Семантическая сеть

СЕМАНТИЧЕСКАЯ СЕТЬ ПРОЕКТА

НАСТОЯЩИХ БУЙНЫХ МАЛО, ВОТ И НЕТУ ВОЖАКОВ (С) В.С.Высоцкий

СПАСИБО ЗА ВНИМАНИЕ

ГРАЧЕВ Сергей Павлович

Генеральный директор

НАО «ГК «Генезис знаний» 000 «Эмерженте»

121205, г. Москва, ИЦ Сколково, Большой бульвар, 42с1

telegram: <u>@Rookson</u> mobile: +7 985 233 0437 email: <u>spg@mrgnt.ai</u>

